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BEYOND BLACK-BOXES: INFUSING STRUCTURES 
INTO DEEP LEARNING
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TRINITY OF AI/ML

DATACOMPUTE

ALGORITHMS



DEEP LEARNING IS DATA-HUNGRY

Data Priors+Learning =

STRUCTURE-INFUSED LEARNING



USE OF PRIORS FOR DATA EFFICIENCY

Examples of Priors
• Tensors and graphs 
• Symbolic rules
• Physical laws
• Simulations

How to use structure and domain knowledge to design Priors?

Data Priors+Learning =
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Learning in Many Dimensions
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TENSOR : EXTENSION OF MATRIX
Tensors: Beyond 2D world

Modern data is inherently multi-dimensional



7

TENSORS FOR DATA
ENCODE MULTI-DIMENSIONALITY

Image: 3 dimensions
Width * Height * Channels

Video: 4 dimensions
Width * Height * Channels * Time



Pairwise correlations

E(x⌦ x)i,j = E(xixj)
<latexit sha1_base64="2eITqqAtLsDBvNjunWpDZ+nFc4I=">AAACCXicbVC7SgNBFL0bXzG+Vi1tRqOQgIRdG7UQgiJYRnBNIAnL7GQSJ5l9MDMrCUtqG3/FxiKKleAf2Pkh9k4ehSYeuHA4517uvceLOJPKsr6M1Nz8wuJSejmzsrq2vmFubt3KMBaEOiTkoah4WFLOAuoopjitRIJi3+O07HUuhn75ngrJwuBG9SJa93ErYE1GsNKSa+5e5rqoFirmU4m6eTdhh+0+OkNadhnquu28a2atgjUCmiX2hGSL+9+DdwAoueZnrRGS2KeBIhxLWbWtSNUTLBQjnPYztVjSCJMObtGqpgHWq+vJ6JU+OtBKAzVDoStQaKT+nkiwL2XP93Snj9WdnPaG4n9eNVbNk3rCgihWNCDjRc2YIxWiYS6owQQlivc0wUQwfSsid1hgonR6GR2CPf3yLHGOCqcF+9rOFs9hjDTswB7kwIZjKMIVlMABAg/wBAN4MR6NZ+PVeBu3pozJzDb8gfHxA2vZm1I=</latexit><latexit sha1_base64="Z62pO/bNG/brJtyDqRHgvhM2dx0=">AAACCXicbVC7SgNBFJ2Nr5j4WLW0GY1CAhJ2bdRCCIpgGcE1gWRZZiezySSzD2ZmQ8KS2sZfsbGIYps/sPNDtHbyKDTxwIXDOfdy7z1uxKiQhvGppZaWV1bX0uuZ7Mbm1ra+s/sgwphjYuGQhbzqIkEYDYglqWSkGnGCfJeRitu5HvuVLuGChsG97EfE9lEzoB7FSCrJ0Q9u8j1YDyX1iYC9gpPQk/YAXkIlOxT2nHbB0XNG0ZgALhJzRnKlo6/hqJv9Ljv6R70R4tgngcQMCVEzjUjaCeKSYkYGmXosSIRwBzVJTdEAqdV2MnllAI+V0oBeyFUFEk7U3xMJ8oXo+67q9JFsiXlvLP7n1WLpndsJDaJYkgBPF3kxgzKE41xgg3KCJesrgjCn6laIW4gjLFV6GRWCOf/yIrFOixdF887Mla7AFGmwDw5BHpjgDJTALSgDC2DwCJ7BELxqT9qL9qa9T1tT2mxmD/yBNvoBYv+czA==</latexit><latexit sha1_base64="Z62pO/bNG/brJtyDqRHgvhM2dx0=">AAACCXicbVC7SgNBFJ2Nr5j4WLW0GY1CAhJ2bdRCCIpgGcE1gWRZZiezySSzD2ZmQ8KS2sZfsbGIYps/sPNDtHbyKDTxwIXDOfdy7z1uxKiQhvGppZaWV1bX0uuZ7Mbm1ra+s/sgwphjYuGQhbzqIkEYDYglqWSkGnGCfJeRitu5HvuVLuGChsG97EfE9lEzoB7FSCrJ0Q9u8j1YDyX1iYC9gpPQk/YAXkIlOxT2nHbB0XNG0ZgALhJzRnKlo6/hqJv9Ljv6R70R4tgngcQMCVEzjUjaCeKSYkYGmXosSIRwBzVJTdEAqdV2MnllAI+V0oBeyFUFEk7U3xMJ8oXo+67q9JFsiXlvLP7n1WLpndsJDaJYkgBPF3kxgzKE41xgg3KCJesrgjCn6laIW4gjLFV6GRWCOf/yIrFOixdF887Mla7AFGmwDw5BHpjgDJTALSgDC2DwCJ7BELxqT9qL9qa9T1tT2mxmD/yBNvoBYv+czA==</latexit><latexit sha1_base64="z0VFJx39qzgBKuwuG9PHNcYZVLk=">AAACCXicbVDLSgMxFM34rPU16tJNtAgtSJlxoy6EogguKzi20A5DJs20aTPJkGSkZejajb/ixoWKW//AnX9j+lho64ELh3Pu5d57woRRpR3n21pYXFpeWc2t5dc3Nre27Z3deyVSiYmHBROyHiJFGOXE01QzUk8kQXHISC3sXY382gORigp+pwcJ8WPU5jSiGGkjBfbBdbEPm0LTmCjYLwUZPe4O4QU0ckBhP+iWArvglJ0x4Dxxp6QApqgG9lezJXAaE64xQ0o1XCfRfoakppiRYb6ZKpIg3ENt0jCUI7Paz8avDOGRUVowEtIU13Cs/p7IUKzUIA5NZ4x0R816I/E/r5Hq6MzPKE9STTieLIpSBrWAo1xgi0qCNRsYgrCk5laIO0girE16eROCO/vyPPFOyudl99YtVC6naeTAPjgEReCCU1ABN6AKPIDBI3gGr+DNerJerHfrY9K6YE1n9sAfWJ8/pDiYgw==</latexit>

Third order correlations

E(x⌦ x⌦ x)i,j,k = E(xixjxk)
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TENSORS FOR ML ALGORITHMS
ENCODE HIGHER ORDER MOMENTS
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Tensor Contraction

Extends the notion of matrix product

Matrix product

Mv =
∑

j

vjMj

= +

Tensor Contraction
T (u, v, ·) =

∑

i,j

uivjTi,j,:

=

++

+

TENSORS FOR COMPUTE
TENSOR CONTRACTION PRIMITIVE
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TENSORS FOR MODELS
STANDARD CNN USE LINEAR ALGEBRA 

TENSORS FOR MODELS
TENSORIZED NEURAL NETWORKS
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SPACE SAVING IN DEEP TENSORIZED NETWORKS

Jean Kossaifi Zachary Lipton

Aran Khanna Tommaso Furlanello



TENSOR PRIMITIVES?

• 1969 – BLAS Level 1: Vector-Vector

• 1972 – BLAS Level 2: Matrix-Vector

• 1980 – BLAS Level 3: Matrix-Matrix

• Now? – BLAS Level 4: Tensor-Tensor

History & Future

= 𝛼 +

= ∗

= ∗

= ∗

Better H
ardw

are utilization

M
ore com

plex data acceses

Kim, Jinsung, et al. "Optimizing Tensor Contractions in CCSD (T) for Efficient Execution on GPUs." (2018).
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UNSUPERVISED LEARNING TOPIC MODELS THROUGH TENSORSExtracting Topics from Documents

A., D. P. Foster, D. Hsu, S.M. Kakade, Y.K. Liu.“Two SVDs Suffice: Spectral decompositions

for probabilistic topic modeling and latent Dirichlet allocation,” NIPS 2012.

Justice

Education

Sports

Topics
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TENSORS FOR MODELING:
TOPIC DETECTION IN TEXT

Co-occurrence 
of word triplets Topic 1 Topic 2



TENSORS FOR LONG-TERM FORECASTING

Difficulties in long term forecasting:

• Long-term dependencies

• High-order correlations

• Error propagation



RNN: FIRST-ORDER MARKOV MODELS

Input state 𝑥$, hidden state ℎ$, output 𝑦$,

ℎ$= 𝑓 𝑥$, ℎ$*+ ; 𝜃 ; 𝑦$= 𝑔( ℎ$; 𝜃)



TENSOR-TRAIN RNNS AND LSTMS
Seq2seq architecture

TT-LSTM cells 



C l i m a t e  d a t a s e tT r a f f i c  d a t a s e t

TENSOR LSTM FOR LONG-TERM FORECASTING

Rose Yu Stephan Zhang Yisong Yue
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LONG-TERM VIDEO PREDICTION
WITH CONVOLUTIONAL TENSOR-TRAIN LSTM 

Jiahao Su, Wonmin Byeon, Furong Huang, Jan Kautz, Anima Anandkumar
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CONVOLUTIONAL TENSOR-TRAIN LSTM
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PREDICTION RESULTS
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PREDICTION RESULTS
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PREDICTION RESULTS

Standard ConvLSTM
Conv-TT Version 1
Conv-TT Version 2

Moving MNIST

KTH



T E N S O R L Y :  H I G H - L E V E L  A P I  F O R  T E N S O R  
A L G E B R A

• Python programming

• User-friendly API

• Multiple backends: flexible + 
scalable

• Example notebooks

Jean Kossaifi



TENSORLY WITH PYTORCH BACKEND
import tensorly as tl
from tensorly.random import tucker_tensor

tl.set_backend(‘pytorch’)
core, factors = tucker_tensor((5, 5, 5),

rank=(3, 3, 3))
core = Variable(core, requires_grad=True)
factors = [Variable(f, requires_grad=True) for f in factors]

optimiser = torch.optim.Adam([core]+factors, lr=lr)

for i in range(1, n_iter):
optimiser.zero_grad()
rec = tucker_to_tensor(core, factors)
loss = (rec - tensor).pow(2).sum()
for f in factors:

loss = loss + 0.01*f.pow(2).sum()

loss.backward()
optimiser.step()

Set Pytorch backend

Attach gradients

Set optimizer

Tucker Tensor form
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Blending Data Driven Learning 
with Symbolic Reasoning
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AGE-OLD DEBATE IN AI

Symbolic reasoning:

• Humans have impressive ability at symbolic reasoning

• Compositional: can combine different concepts

Representation learning: 

• Data driven: Do not need to know the base concepts

• Black box and not compositional

Symbols vs. Representations

Combining Symbolic Expressions & Black-box Function Evaluations in Neural Programs, ICLR 2018

Forough
Arabshahi

Sameer
Singh



EXPLOITING HIERARCHICAL REPRESENTATIONS

Symbolic expression Function Evaluation Data Point Number Encoding Data Point



Majority Class Sympy LSTM : sym TreeLSTM : sym TreeLSTM:sym+num
Generalization 50.24% 81.74% 81.71% 95.18% 97.20%
Extrapolation 44.78% 71.93% 76.40% 93.27% 96.17%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%
A

CC
U
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CY

EQUATION VERIFICATION



TAKE-AWAYS
Vastly Improved numerical evaluation: 90% over function-fitting 
baseline.

Generalization to verifying symbolic equations of higher depth

Combining symbolic + numerical data helps in better 
generalization for both tasks: symbolic and numerical 
evaluation.

LSTM: Symbolic TreeLSTM: Symbolic TreeLSTM: symbolic + numeric

76.40 % 93.27 % 96.17 %
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Learning in Control Systems

Neural Lander: Stable Drone Landing Control using Learned Dynamics, ICRA 2019

Guanya
Shi

Xichen
Shi

Michael
O’Connell

Kamyar
Azizzadenesheli

Rose
Yu

Soon-Jo
Chung

Yisong
Yue
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LEARNING RESIDUAL DYNAMICS FOR DRONE LANDING

𝑠$2+ = 𝑓 𝑠$, 𝑎$ + 5𝑓 𝑠$, 𝑎$ + 𝜖

New State

Current State

Current Action (aka control input)

Unmodeled Disturbance

𝑓 = nominal dynamics
5𝑓 = learned dynamics

Use existing control methods to generate actions
• Provably robust (even using deep learning)
• Requires 5𝑓 Lipschitz & bounded error
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GENERALIZATION PERFORMANCE ON DRONE

Our Model Baseline

H
ei

gh
t

Vertical Velocity

Spectral Regularized NN Conventional NN

Spectral-Normalized
4-Layer Feed-Forward

Spectral Normalization: 
Ensures 7𝑭 is Lipshitz
[Bartlett et al., NeurIPS 2017]
[Miyato et al., ICLR 2018]

Ongoing Research: 
Safe Exploration
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CAST @ CALTECH
LEARNING TO LAND
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TESTING TRAJECTORY TRACKING

Move around a circle super close to the ground
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6.3 Summary of Facilities, Equipment, and Other Resources
The Center for Autonomous Systems and Technologies (CAST) at Caltech, directed by Prof.
Gharib, promotes interdisciplinary research and the exchange of ideas in the expanding area of
autonomous systems ( ). These systems include, but are not limited
to, drones and robots for use in science, industry, and medicine. The research conducted by the
center addresses sensing, control, vision, and other emerging areas. Currently, drones are highly
unstable flyers and are prone to atmospheric conditions. CAST’s unique open air wind tunnel
facility, shown in Fig. 13, allows researchers to study the complexity and challenges of control and
stability associated with autonomous single or collective drone systems. Drone performance can be
tested and studied under severe atmospheric conditions such as rain, hail, sandstorms, turbulence,
and gust.

Figure 13: Caltech’s CAST drone research
facilities.

The CAST-facility is built of 8,230 square feet (765
m2) of specialized lab including: high-bay drone &
robotic testing facility, fabrication lab & assembly area,
and o�ces, meeting rooms, visiting sta� o�ces and re-
strooms. 4,300 square feet (399 m2) is located inside the
first floor of the Karman Laboratory and enclose 1800
square feet (167 m2) of outside laboratory space where
the wind tunnel system and drone flight arena is located.

The CAST wind tunnel facility in (Figs. 3 & 13), at
its core, provides a paradigm change in the field of multi-
functional wind tunnels, by incorporating a wide variety
of flow conditions in a space e�cient package. Introduc-
ing a new technique of generating flow patterns not de-
pendent upon obstacle geometries (which result in major
pressure losses) allows an open loop tunnel concept to be
implemented, maximizing test section size in a limited
space environment. To meet recent research challenges
and open new fields of wind tunnel testing, Co-PI Gharib
and his students have built an innovative concept of a con-
figurable 10-foot-by-10-foot multi-fan array of 1296 fans
capable of generating wind speeds of up to 44 mph, with
a side wall of 324 fans to create a crosswind. The wall is
capable of creating a nearly infinite variety of wind con-
ditions for drones to learn to react to– everything from
a light gust to a stormy vortex. It can also be tilted 90
degrees to simulate vertical take o�s and landings.

A real-time optical tracking system, comprised of 48
IR cameras, is implemented throughout the entire outdoor
drone arena of the CAST facility, including a designated
subsystem for the wind tunnel test section, to relay de-
tailed positioning information to the user. This setup al-
lows drones to enter and exit the test section as desired

but remain actively tracked and controlled throughout all of the CAST facility. The setup consists
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AUTONOMOUS DYNAMIC ROBOTS
of an arrangement of high precision cameras placed throughout the capture space which can locate
an object three-dimensionally with sub-millimeter accuracy. The location information, for exam-
ple, can be fed back wirelessly to a control system to position one or more drones flying in the test
section with 200-micron accuracy.

Figure 14: Caltech’s Lucas wind tunnel
(1.3 m tall and 1.8 m wide)

The John W. Lucas Wind Tunnel at Caltech is a
medium-sized, low-speed wind tunnel with a 4.3 feet (1.3
meters) tall, 5.9 feet (1.8 meters) wide and 24.6 feet (7.5
meters) long test section. The closed circuit tunnel uti-
lizes a 670 hp (500 kW) synchronous motor driving a
16-blade variable pitch fan and can achieve flow speeds
up to 168 mph (75 m/s). It uses adaptive wall technol-
ogy to minimize the wall interference and reduce the need
for data corrections required in straight-wall tunnel tests.
Based on the measured pressure distribution around the
investigated model the wall contour is adapted to the cur-
rent model configuration to mimic an infinite flow field.
Equipped with a highly accurate 6-component strain gage balance, this tunnel provides precise data
about aerodynamic forces and moments. In addition, the Lucas Wind Tunnel is designed to facili-
tate particle image velocimetry (PIV) measurements, which enables a full dynamic characterization
of the flow field around any investigated model. The equipment was originally designed to fit within
the confines of the 90 x 30 x 20 feet (27.4 x 9.1 x 6.1 m) room in which it sits.

Figure 15: Prof. Chung’s space drone sim-
ulator facility.

The Aerospace Robotics and Control Laboratory at
Caltech, directed by PI Chung, has the facility and equip-
ment to develop full-autonomous aerial robots, such as
robotic multicopter systems with custom onboard autopi-
lot systems and single-board computers for computer-
vision based navigation and control, and robotic flapping
flying bats (AFOSR Young Investigator Award, 2009-
2011 and NSF CAREER Award 2013-2018). Our new
spacecraft research laboratory consists of a large space-
craft fabrication space with a clean room and one of the
largest spacecraft motion simulation flat floors among
university laboratories. The lab is also equipped with 3-
D printers for rapid prototyping of novel UAV designs,
multiple oscilloscopes, function generators, and real-time

control computers. The lab also has a state-of-the-art motion capture system for rapid implementa-
tion of control algorithms and two MarkForge Carbon Fiber 3D printers for fabricating lightweight
UAV wing and body structures. The Aerospace Department at Caltech (GALCIT) owns an ad-
vanced machine shop that is equipped with multiple 3D printers (SLS), laser cutters, and various
metalworking tools ( ).
6.4 Current and Pending Support
A separate document for listing funding and research activities of the PI and Co-PI in on-going and
pending research projects is attached into the R&R Senior / Key Person Profile Form.
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All the tasks will be performed on campus at the two universities: Caltech and GaTech.
There are no human or animal subjects involved. We will release the data collected on robot
measurements in the wind tunnel for drones and from the walking lab for bipedal robots. We
will also release the trained AI models as well as the software code, and make experiments
reproducible. The outcomes will be published at top AI and robot venues and the technical
reports will be made available.

6 Learning-Based Flight Control Algorithms

Objectives: By leveraging the successful development and implementation of our guid-
ance, navigation, and flight control algorithms with the proposed algorithms to learn high-
fidelity 6-DOF flight dynamic models under various perturbations, we will further improve
a three-way trade-o↵ among robustness, computational e�ciency, and optimal performance
characteristics of our flight control and autonomy systems in this project.

Motivation: The recent successes of supervised machine learning have spurred great
interest in applying data-driven methods to virtually every domain. However, existing ma-
chine learning approaches cannot e↵ectively capture the full complexity of many real-world
settings such as adversary wind conditions for nonlinear flight stability. Thus far, the adop-
tion of data-driven techniques in such domains is piecemeal and ad-hoc, and is increasingly
a bottleneck in the development of systems that feature unconventional complicating factors
such fast interactions between environments, unsteady aerodynamics, and nonlinear flight
dynamics. We will develop an integrated approach that holistically combines principles from
learning theory with those from system-theoretic disciplines such as optimal and robust
stochastic nonlinear control.

Figure 1. Autonomous flight of Caltech’s electric VTOL with

dynamically-sweeping wings (Fig. ??) under a wide spectrum of

severe wind conditions generated by the 1296-fan-array.

Guidance and control strategies
for highly maneuvering flight will
be designed to operate at multi-
ple timescales: the outer loop will
run an order of magnitude slower
than the flight dynamics in SE(3),
while transition maneuvers will be
controlled at the same time scale
as the flight dynamics. We will
develop (1) optimal agile motion
primitives utilizing flight data col-
lected with CAST’s open air wind
tunnel (see Fig. 1) and simula-
tion of reduced-order aeromechan-
ical models, which are fed into
the inner loop around the flight
controllers , and (2) a maneuver-
specific motion planning algorithm
that will make high-level decisions
to smoothly sequence qualitatively di↵erent maneuvers such as gliding, 3D turning, div-

9



Mory Gharib

Anima Anandkumar

Soon-Jo Chung

Yisong Yue

Aaron Ames

Joel Burdick

Postdoc Openings!
(applications considered 

starting January)

http://cast.caltech.edu

Pietro PeronaKatie Bouman

http://cast.caltech.edu/
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DETECTING VISUAL HARDNESS

Beidi Chen, Weiyang Liu, Animesh Garg, Zhiding Yu, Anshumali Shrivastava, Jan Kautz, Anima Anandkumar
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RECORDING HUMAN SELECTION FREQUENCIES

Human Labelling Interface 

Recht et al. “Do ImageNet Classifiers Generalize to ImageNet?” ICML 2019

Selection frequency is a measure of human visual hardness + annotator bias
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MODEL CONFIDENCE > 0.9 HUMAN SELECTION FREQUENCY < 0.5
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MODEL CONFIDENCE < 0.5 HUMAN SELECTION FREQUENCY > 0.9
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LOSS FUNCTION OF CNNS IN VISUAL RECOGNITION
• Softmax cross-entropy loss - one of the most popular loss functions in CNN

where,

angle between feature and 
classifier

magnitude

Model Confidence
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2D FEATURE EMBEDDING ON MNIST
● Deeply learned features are naturally decoupled with angle and norm.
● The angle reflects the semantic difference.

0
1
2
3
4
5
6
7
8
9

Norm ||x||
Angle θ(x,wy)

Classifier wy
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BRIDGING THE GAP BETWEEN HUMAN VISUAL 
HARDNESS AND MODEL PREDICTIONS --

ANGULAR VISUAL HARDNESS
● Definition of angular visual hardness (AVH):

Given a sample x with label y:

where, 

wi is the classifier for the i-th class.
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AVH IS A UNIVERSAL SCORE OF HARDNESS

Alexnet VGG19 Resnet50
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AVH IS AN INDICATOR OF MODEL’S 
GENERALIZATION ABILITY

Alexnet VGG19 Resnet50

Alexnet VGG19 Resnet50



47

AVH HITS A PLATEAU VERY EARLY EVEN WHEN 
THE ACCURACY OR LOSS IS STILL IMPROVING

Alexnet VGG19 Resnet50

Alexnet VGG19 Resnet50
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THE NORM OF FEATURE EMBEDDING KEEPS 
INCREASING DURING TRAINING

Alexnet VGG19 Resnet50

Alexnet VGG19 Resnet50
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SOME CONJECTURES ABOUT TRAINING DYNAMICS

● Phase 1: Softmax cross-entropy loss first optimize angles among
different classes while norm fluctuates and increases very slowly

● Phase 2: Angles become more stable and change slowly while norm
increases rapidly

● Easy examples: Angles are matched well for correct classification

● Hard examples: Angles plateau and loss can only be improved by
increasing norm
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APPLICATION TO SELF-TRAINING
RESULTS ON VIS-DA 17

● Self-training sensitive to misclassified pseudo-labels
● Need good measure of hard examples
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TAKE-AWAYS

● Angular distance (normalized) is a robust
measure of human selection frequency, related
to visual ambiguity.

● Application to self-training gives SOTA results
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CONCLUSION

End-to-end learning from scratch is impossible in most settings

Blend DL w/ prior knowledge => improve data efficiency, 
generalization, model size

Obtain side guarantees like stability + safety in control

Outstanding challenge (application dependent): 

what is right blend of prior knowledge vs data?
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Thank you


