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Machine Learning (ML)
ArtieraateHisenee-and the Scientific Method?

-> How 1S ML changmg the SCleIltlfIC method’? .

-> Do we need smentlflc method to advanee ML‘P




ENGINEERING & SCIENCE

e ML mostly developed by engineering design process: Define an
objective (e.g. to reach the best accuracy on ImageNet). Create
a tool that reaches the objective.

Number Extra
of Training Paper Title Year Paper Code
params Data

Top 1 Top 5

Rank Method
Accuracy Accuracy

FixResNeXt-

86.4% 98.0% 829M v Fixing the train-test resolution discrepanc
101 32x48d ° pancy - L

= Deep learning is a revolutionary engineering progress.

e Scientific method aims to understand behaviour of existing
world. Do we understand why FixResNeXt-101 works?

= Science/understanding of deep learning is in its infancy.
Do we know more about black holes or deep learning?

—



MORE QUESTIONS

® Do we need science/understanding? Isn’t engineering
enough, simply because “it works”?

e Some questions for which I think engineering is not enough:

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

m Why don’t heavily parameterized neural networks overfit the data?

m What is the effective number of parameters?
m Why doesn’t backpropagation head for a poor local minima?

From “Reflections after refereeing papers for NIPS”, Leo Breiman

Still not answered!




TOWARDS THEORY OF DEEP LEARNING?

Inter-play of three ingredients

computer science, optimisation theory

See also: E. Mossel, Deep Learning Boot Camp in Simons Institute, Berkeley (June 2019).



LONG-LASTING FRIENDSHIP
BETWEEN

MACHINE LEARNING AND
STATISTICAL PHYSICS




STATISTICAL PHYSICS AND MACHINE LEARNING

ECOLE DE

PHYSIQUE
DES HOUCHES

Yann LeCun is with Levent Sagun and 3 others.

Disordered Systems and

Stéphane Mallat's tutorial at the "Statistical Physics and Machine Learning back

Together" summer school in Cargese, Corsica. B i 0 I Og ical Organ izati 0 n

There is a long history of theoretical physicists (particularly condensed matter
physicists) bringing ideas and mathematical methods to machine learning, neural
networks, probabilistic inference, SAT problems, etc. 13 M. MEZARD

In fact, the wave of interest in neural networks in the 1980s and early 1990s was in On the statlstlcal physics of spin glasses.

part caused by the connection between spin glasses and recurrent nets popularized X
by John Hopfield. While this caused some physicists to morph into neuroscientists 16 J.J. HOPFIELD, D.W. TANK

and machine learners, most of them left the field when interest in neural networks Collective computation with continuous variables.

wanted in the late 1990s 20 M.A. VIRASORO

With the prevalence of deep learning and all the theoretical questions that surround Ultrametricity, Hopfield model and all that.
it, physicists are coming back! WEERRETRS

24 Y LE CUN
Many young physicists (and mathaticians) are now working on trying to explain why Leammg process in an asymmetric threshold network. 233

deep learning works so well. This summer school is for them. =
27 J. BUHMANN, K. SCHULTEN
A physiological neural network as an autoassociative memory. 273

We need to find ways to connect this emerging community with the ML/AI
community. It's not easy because (1) papers submitted by physicists to ML _
conferences rarely make it because of a lack of qualified reviewers; (2) conference JO D. GEMAN, S. GEMAN

papers don't count in a physicist's CV. Bayesian image analysis. 301

http://cargese.krzakala.org




e In data science, models are used to fit the data (e.g. linear
regression: Best straight line that captures the dependence
of y on x?). In physics we could call those an “ansatz”.

* In physics, models are the main tool for understanding.

2-D Ising Model

W magnetism of materials




WHAT TO MODEL IN DEEP LEARNING?

We aim to reproduce the salient behaviours of the real system.

Iterative process of improving the model.




WHEN CAN A NEURAL NETWORK LEARN
A TEACHER-NEURAL NETWORK?

Teacher-network

Generates data X, n samples of p
dimensional data, e.g. random input
vectors.

Generates weights w*, e.g. iid random.

Generates labels y.

teacher-weights

data /
wi - labels

Wa. Y

Student-network

o Observes X, y, the architecture of the
network.

o How does the best achievable
generalisation error depend on the
number of samples n?

student-weights

data /
X . w l \
: Wo labels

Wa o ¥




Yoshua Bengio at France in AI'18: On challenges of deep learning
towards Al




Alien Language Understanding: a Thought Experiment

P> Imagine yourself approaching another planet and observing the bits of information
exchanged by aliens communicating with each other

P Unlike on Earth, their communication channel is noisy, but like on Earth, bandwidth
IS expensive = the best ‘way to communicate is to maximally compress the
messages, which leads c»  sequences of random bltS bemg actually exchanged

P If we only observe the compressed messages, there is no way we can ever
understand the alien lang

P >l o) 9:27/2153




Sanjeev Arora at ICML’18: Tutorial on theory of deep learning.

Overparametrization may help optimization : facebook

folklore experiment e.g [Livni et al'1 4]

using this labeled data

hidden layer of size n with same # of hidden nodes

Still no theorem Much easier to train a new net with
explaining this... _bigger hidden layer!

7/10/2018 Theoretically understanding deep learning




TEACHER-STUDENT PERCEPTRON
Gardner, Derrida’89, Gyorgyi’'9o

Single layer neural network
data X

J. Phys. A: Math. Gen. 22 (1989) 1983-1994. Printed in the UK W WelghtS

Model B in: g

Three unfinished works on the optimal storage capacity
of networks

E Gardner and B Derrida

The Institute for Advanced Studies, The Hebrew University of Jerusalem, Jerusalem, Israel

P
and Service de Physique Théorique de Saclayt, F-91191 Gif-sur-Yvette Cedex, France — 1 ; :
Y, = sign E X,W;
=1

Received 13 December 1988

[} o
p dimensions
Abstract. The optimal storage properties of three different neural network models are

studied. For two of these models the architecture of the network is a perceptron with =J n Samples
interactions, whereas for the third model the output can be an arbitrary function of the
inputs. Analytic bounds and numerical estimates of the optimal capacities and of the
minimal fraction of errors are obtained for the first two models. The third model can be

solved exactly and the exact solution is compared te the bounds and to the results of hlgh-dll I lenSIOHal 11' I |1t
numerical simulations used for the two other models,
n—> 00 p— o0

nip =a=L£(1)




Solved using the replica method in the high-dimensional limit

RAPID COMMUNICATIONS

PHYSICAL REVIEW A VOLUME 41, NUMBER 12 15 JUNE 1990

First-order transition to perfect generalization in a neural network with binary synapses

Géza Gyorgyi*
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430
(Received 9 February 1990)

Learning from examples by a perceptron with binary synaptic parameters is studied. The ex-
amples are given by a reference (teacher) perceptron. It is shown that as the number of examples
increases, the network undergoes a first-order transition, where it freezes into the state of the
reference perceptron. When the transition point is approached from below, the generalization er-
ror reaches a minimal positive value, while above that point the error is constantly zero. The
transition is found to occur at agp =1.245 examples per coupling.

e Binary teacher-weights:
w*e {—1,1}F

e Phase transition in the
generalization error’s dependence

/’“” x on sample complexity.

agp = 1.245 CVAT = 1.493 a=nlp
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RECENT PROGRESS

e Solution for any activation function, general class of priors on
weights.

e Rigorous proof that the replica solution for the teacher-student
model is correct.

o Regions of optimality of approximate message passing algorithm.

' Barbier, Krzakala, Macris, Miolane, LZ, arXiv:1708.03395, COLT’18, PNAS’19 " |




CLOSED FORMU LA

|
Def. “quenched” free energy: f= lim —E, ylogZ(y, X)

p—oo P

Theorem 1:

f =supinf frs(m,m)

= ®py () + a®p,, (M; p)

> [em:vxo—l—m:cz—me/Z} ]

<4

®p . (m;p) =E, . [/dy Pouwt(ylvmuv + v/p— mz) InEy [Pout(y|v/mv + +/p — mw)] }
(O, 1) = Epw(Wz)




CLOSED FORMU LA

|
Def. “quenched” free energy: f= lim —E, ylogZ(y, X)

p—oo D
Theorem 1:
f =supinf frs(m,m)
m M

A

mm
2

fRS(m7 m) — ¢PX (m) —I_ (X@Pout (m;p)

Theorem 2: Optimal generalisation error

ggen— 435 [ff(\/ﬁv) }_4: e [ff(mv—l_\/p_m*w)]z

v v w,§

P = [EPW(WZ)
v,w~ N(0,1)
ol

where m* 1s the extremizer of frs.




SPHERICAL PERCEPTRON

@(z) = si1gn(z) .= 1101
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BINARY PERCEPTRON

I OO

5o ba nip = L1

optimal, achievable
optimal
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logistic regrgssion

P—
@)
P
P—
D)
-
@)
o P4
e
qe!
0p)
i
qv!
P
D)
e
<)
o0

|

0.5 1




P—
@)
P
P—
D)
-
@)
o P4
e
qe!
0p)
i
qv!
P
D)
e
<)
o0

BINARY PERCEPTRON
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Is this bringing us towards the theory of deep learning?




TOWARDS THEORY OF DEEP LEARNING?

color-code:

described so far
needed

algorithm
message passing

gradient-descent-based




GOING MULTI-LAYER

Committee machine
Model from Schwarze’'g2.

Proof of the replica formula, and approximate message passing Aubin, Maillard,
Barbier, Macris, Krzakala, LZ, NeurIPS’18, arXiv:1806.05451.

weights

data
' p input units X w / l \
labels

Vi L=3 layers
(O Khidden units Vo Y

w learned, v, & v» fixed
O output unit

n training samples

a=nlp=01)y Kk — ()]}




SPECIALISATION TRANSITION

111<id=d§nunits = s1gn131gn Z il +Slgnz <X ‘W’z)]

l

0.25

e Specialization phase transition
= hidden units specialise to
correlate with specific features.

0.201

0.151

Consequence: Sharp threshold
for number of samples below
which linear regression is the
best thing to do.

Generalization error €,(«)




COMPUTATIONAL GAP

y,u = S12n [ Z Slgn Z 10,0 la ] — Bayes optimal €,4(@)

+ AMP ¢/(a)

—-- Discontinuous specialization

hidden units /K > 1
e Large algorithmic gap:

Computational gap

> IT threshold: n > 7.65Kp
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> Algorithmic threshold
n > const. K*p

0.0
0 2 4 6 8 10 12 14

a = (# of samples) /(#hidden units x input size)
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GRADIENT-BASED ALGORITHMS

spherical constraint (m(On(t)) = 2T6,;6(t — 1)
(weight decay) noise

b OH V4
X(1) = — p()x,(1) p - 171
x.

l

G

gradient

e T=1 Langevin algorithm: At large time (exponentially) samples
the posterior measure.

e T=0 Gradient flow.

Where do they go in large constant time?




MIXED SPIKED MATRIX-TENSOR MODEL

e On the same signal x* observe a matrix Y and tensor T as:

I
= \/in*xf +¢; i~ N(0,A,)
-y 1)l

* * . s o
S X+ i, Cipyooiy ~ N (0,4,)

e Corresponding Hamiltonian (loss function, log-likelihood)

1 Vip— D!
)= = ZY.]-x.xj— z i
l]" 1 1y l ...lp l lp
Az\/ﬁ i<j APN(p : ==, 1 1

spherical constraint: Zx =
Spiked version of the mixed 2+p spherical spin glass model.




DYNAMICAL MEAN FIELD THEORY

The same model without spike: mixed spherical p-spin glass

Mean field theory of glassy dynamics:

VOLUME 71, NUMBER | PHYSICAL REVIEW LETTERS 5 JuLy 1993

Analytical Solution of the Off-Equilibrium Dynamics
of a Long-Range Spin-Glass Model

L. F. Cugliandolo and J. Kurchan
Dipartimento di Fisica, Universita di Roma, La Sapienza, I-00185 Roma, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Roma I, Roma, Italy
(Received 8 March 1993)

We study the nonequilibrium relaxation of the spherical spin-glass model with p-spin interactions
in the N — oo limit. We analytically solve the asymptotics of the magnetization and the correlation
and response functions for long but finite times. Even in the thermodynamic limit the system
exhibits “weak” (as well as “true”) ergodicity breaking and aging effects. We determine a functional
Parisi-like order parameter P;(q) which plays a similar role for the dynamics to that played by the
usual function for the statics.

PACS numbers: 75.10.Nr, 02.50.-r, 05.40.+j, 64.60.Cn

Proof of this without spike: BenArous, Dembo, Guionnet’06.




LANGEVIN STATE EVOLUTION

Sarao, Biroli, Cammarota, Krzakala, Urbani, LZ, arXiv:1812.09066.

= % Zf; zi(t)zi(t'),
= % fi1 xz(t)x:‘ ; Q(z) = 2°/(2A2) + 2P/ (pA,).
S, 0xi(t) [Ohi(t) ni=o R

%C (t,t') =2R(',t) — u()C(t, ') + Q'(C(1))C(t') + / t dt"R(t,t")Q"(C(t,t"))C(t', t") + / t dt" R(t',t")Q'(C(t,t"))
0 0

t

S R(0) =5t —t) ~ uORWY) + [ d"REQ (CtENRE, ).

tl

500 = —u(O0() + Q') + [ d"R(t,}TW)Q"(Clt, 1), Langevin algorithm (T=1)

%C(t,t’) = —p(t)C(t, ")y + Q' (C(t)C(t) + /0 tdt”R(t,t”)Q”(C(t,t”))C(t’,t”) - /0 t dt"R(t', Q' (C(¢,t")),

9 R(.t) = ~pORE) + [ @t R EIQ O VR ).

%ﬁ(t):—g(t)at)+cg'(6(t)) + /O dit"R(t,t")C(")Q"(C(t,1")),

Gradient tlow (T=0)

-~ - —
A— -




GRADIENT-FLOW PHASE DIAGRAM

GF works

GF does not work




POPULAR “EXPLANATION"

V

Trivialisation

Increasing the SNR I

v —



COUNTING MINIMA: KAC-RICE

Sarao, Biroli, Cammarota, Krzakala, Urbani, LZ’'19

Annealed entropy of local minima (at m=0 also quenched):

3 . B+
ZA2,AP(m,62,ep) — §log 1” n 12 + §log(1 —m2)
A, T A,

Similar to Ben Arous,
Mei, Song, Montanari,

o 2 Nica’17; Ros, Ben Arous,

mP ! 4 m )2
Ap A2 (1 o mz) o pAp

Biroli, Cammarota’18 for
spiked tensor model

1 1
A_p+A_2 pAp

—A —2 2 —
-+ + O(t L(6.t

where:

_r 2l e
(t) = 152 |log 4/ 5 — 1+ 4\/t 4

—




WHAT IS GOING ON?

Gradient flow

Landscape trivialisation




LANDSCAPE ANALYSIS

Sarao, Biroli, Cammarota, Krzakala, Urbani, LZ; NeurIPS’19, arXiv:1907.08226.

Former minima develop a negative slope

/ in the direction of the spike!
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THRESHOLD RECIPE

Dynamics first goes to the threshold states (replicon condition):

T2 thyp—2 1
=0 1)(q A

(1 = qth)Z Ap AZ

AMP state evolution at fixed q, determines stability of T=0:

Sl 1 —g ﬁ_{_ (m")P~2
T A, A

P
Putting together gives the Langevin/gradient-tflow threshold:

1 (-TA) - |
1 =
A2 A, A,




GRADIENT-FLOW PHASE DIAGRAM




CONCLUSION ON GRADIENT FLOW

e Gradient flow (sometimes) works even when spurious local
minima are present. Quantified with the Kac-Rice approach.

o First time we have a closed-form conjecture for the threshold of
gradient-based algorithms including constants.

Applicable beyond the presented model?

RTTE clie e S e S
T T e e N
e R VUV L e
i s U V V e e
L T

Trivialisation

Increasing the SNR I

—

cost/energy




TOWARDS THEORY OF DEEP LEARNING?

color-code:
described so far
needed

algorithm
message passing

gradient-descent-based




MNIST VS TEACHER/STUDENT

Goldt, Krzakala, Mézard, LZ; arXiv:1909.11500

Teacher/student:
Plateau in learning dynamics, due to specialisation (Saad, Solla’gs).

MNIST (even vs odd classification): No plateau ...

— Vanilla teacher/student
—— MNIST task

100 10! 102 1
steps/ K/ N




MNIST VS TEACHER/STUDENT

MNIST (odd vs even): Teacher/student:

Two independent students do Two independent students
not learn the same function! learn the same function!

o
'R R 061 b
; ¢ &l (i.i.d. Gaussian)

frac
¢ g
+ €lr3s (structured)

¢ €l (i.i.d. Gaussian)




HIDDEN MANIFOLD MODEL

Inputdata: X R™? Cc R
F € R

n samples, p input & d latent dimension.

Input on low-dimensional manifold.

X =J(Ch)

C, F iid matrices.

True labels:

Depend on the latent coordinates C.

M

3=y s ((Wm, Cﬂ>>

m=1

Vanilla teacher/student

X 1s 11d matrix

Y = i Vil ((Wm, X,))
=1




MNIST VS HIDDEN MANIFOLD

MNIST (odd vs even): Hidden manifold (d=10)

Two independent students do ~ Two independent students do
not learn the same function! not learn the same function!

TR R T
+ 2

4

' o Vo

+ &l (structured) 02 + elrEs (structured)

¢ €l (i.i.d. Gaussian) 4 &lEr (iid. Gaussian)

4 6 8
K




MNIST VS HIDDEN MANIFOLD

Teacher acting on X: Plateau in learning dynamics
MNIST & hidden manifold: No plateau ...

—— Vanilla teacher/student —— Teacher task
——— MNIST task ] —— Latent task

10T 10° 100 107 10° 10 10 100 100 102 10°  10°
steps / K/ N steps/ K/ N




CONCLUSION ON HIDDEN MANIFOLD

e The hidden manifold model reproduces/captures behaviour
of learning-dynamics on MNIST.

o Both (i) low-dimensional structure of input, and (i1) labels
depending on the latent representation are needed.

e TODO: Solve analytically.

e TODO: Generalize to be able to demonstrate the advantage
of depth.
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